Abstract

By dissolving the membrane with detergent perfusion, we have shown that the established neurites of dorsal root ganglion cells cultured for more than 5 days contained microtubules which persisted outside the cell for a few minutes to more than 1h [Tashiro et al., 1997: J. Neurosci. Res. 50:81-93]. To investigate their stabilization mechanism, we transected the exposed microtubules by laser microbeam irradiation and observed their length changes with video-enhanced differential interference contrast microscopy. Microtubule fragments started to shorten on both sides of the transection site. more rapidly from the newly generated plus ends than from the minus ends. The maximal rate as well as the pattern of shortening correlated with the time of transection; microtubules transected later than 30 min after membrane removal shortened at rates less than 20 microm/min and typically with intermittent pauses, while the more labile microtubules included in the earlier transections shortened continuously at higher rates. Microtubules in neurites were thus stabilized by 1) stopping disassembly at local sites including the plus ends, and 2) slowing disassembly along the length. Transection also suggested the presence of specialized points along microtubules which are involved in anchoring microtubules to the substratum. Cell Motil. Cytoskeleton 42:87-100, 1999.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.