Abstract

Characterization of conformation kinetics of proteins at the interfaces is crucial for understanding the biomolecular functions and the mechanisms of interfacial biological action. But it requires to capture the dynamic structures of proteins at the interfaces with sufficient structural and temporal resolutions. Here, we demonstrate that a femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) system developed by our group provides a powerful tool for monitoring the real-time peptide transport across the membranes with time resolution of less than one second. By probing the real-time SFG signals in the amide I and amide A bands as WALP23 interacts with DMPG lipid bilayer, it is found that WALP23 is initially absorbed at the gel-phase DMPG bilayer with a random coil structure. The absorption of WALP23 on the surface leads to the surface charge reversal and thus changes the orientation of membrane-bound water. As the DMPG bilayer changes from gel phase into fluid phase, WALP23 inserts into the fluid-phase bilayer with its N-terminal end moving across the membrane, which causes the membrane dehydration and the transition of WALP23 conformation from random coil to mixed helix/loop structure and then to pure α-helical structure. The established system is ready to be employed in characterizing other interfacial fast processes, which will be certainly helpful for providing a clear physical picture of the interfacial phenomena.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.