Abstract

The uptake of hydrogen by lanthanum pentanickel (LaNi5) to form lanthanum nickel hydride (LaNi5H6) is followed with three-dimensional imaging by neutron tomography. The hydrogen absorption process is slower than the time needed for acquiring a single radiograph, about 10s, but fast relative to the time to acquire a fully-sampled tomographic data set, about 6000s. A novel data acquisition scheme is used with angles based upon the Greek Golden ratio, a scheme which allows considerable flexibility in post-acquisition tomography reconstruction. Even with tomographic undersampling, the granular structure for the conversion of LaNi5 particles to LaNi5H6 particles is observed and visually tracked in 3D. Over the course of five sequential hydrogen uptake runs with various initial hydrogen pressures, some grains are repeatedly observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.