Abstract

A high-energy H+ microbeam generated by tapered glass capillary optics was applied to a single Escherichia coli cell, in order to evaluate the effects of irradiation on the activity of the flagellar motor and cell growth in real time. The flagellar motor of the tethered cells was stopped by irradiation with an average ion fluence of 2.0 × 1012 protons/cm2. When a lower dose was applied to the cells attached to the substrate, an elongated cell, which seemed ready to divide, divided into two daughter cells; however, the daughter cells did not elongate, neither did further cell division occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.