Abstract

Real-time atomic force microscopy (AFM) was used for analyzing effects of the antimicrobial polycation copolyoxetane P[(C12)-(ME2Ox)-50/50], C12-50 on the membrane of a model bacterium, Escherichia coli (ATCC# 35218). AFM imaging showed cell membrane changes with increasing C12-50 concentration and time including nanopore formation and bulges associated with outer bacterial membrane disruption. A macroscale bactericidal concentration study for C12-50 showed a 4 log kill at 15 μg/mL with conditions paralleling imaging (1 h, 1x PBS, physiological pH, 25 °C). The dramatic changes from the control image to 1 h after introducing 15 μg/mL C12-50 are therefore reasonably attributed to cell death. At the highest concentration (60 μg/mL) further cell membrane disruption results in leakage of cytoplasm driven by detergent-like action. The sequence of processes for initial membrane disruption by the synthetic polycation C12-50 follows the carpet model posited for antimicrobial peptides (AMPs). However, the nanoscale details are distinctly different as C12-50 is a synthetic, water-soluble copolycation that is best modeled as a random coil. In a complementary AFM study, chemical force microscopy shows that incubating cells with C12-50 decreased the hydrophobicity across the entire cell surface at an early stage. This finding provides additional evidence indicating that C12-50 polycations initially bind with the cell membrane in a carpet-like fashion. Taken together, real time AFM imaging elucidates the mechanism of antimicrobial action for copolyoxetane C12-50 at the single cell level. In future work this approach will provide important insights into structure-property relationships and improved antimicrobial effectiveness for synthetic amphiphilic polycations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call