Abstract
This paper presents an innovative approach for detecting and localizing duplicate objects in pick-and-place applications under extreme conditions of occlusion, where standard appearance-based approaches are likely to be ineffective. The approach exploits SIFT keypoint extraction and mean shift clustering to partition the correspondences between the object model and the image onto different potential object instances with real-time performance. Then, the hypotheses of the object shape are validated by a projection with a fast Euclidean transform of some delimiting points onto the current image. Moreover, in order to improve the detection in the case of reflective or transparent objects, multiple object models (of both the same and different faces of the object) are used and fused together. Many measures of efficacy and efficiency are provided on random disposals of heavily-occluded objects, with a specific focus on real-time processing. Experimental results on different and challenging kinds of objects are reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.