Abstract

A kind of novelty detection method based on retina neural network is proposed, which could find the novelty in chaotic time series. To demonstrate the capability of the novelty detection method, we designed three novelty detectors,namely the neural network novelty detector (RNNND), back-propagation(BP) novelty detector (BPND) and radial base function(RBF) novelty detector (RBFND), which are based on retina neural network, BP neural network and RBF neural network, respectively. Using Lorenz time series and oil pipeline pressure time series, we tested the performance of the three novelty detectors, including performances of anti-jamming, micro-novelty detection and the computing speed. The results show that the three novelty detectors have good precision and fast computing speed. Finally, the merits and shortcomings of the proposed novelty detection method are analyzed based on retina neural network, BP and RBF neural network, and their applicabilities are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.