Abstract

BackgroundIn-field measurement of yield and growth rate in pasture species is imprecise and costly, limiting scientific and commercial application. Our study proposed a LiDAR-based mobile platform for non-invasive vegetative biomass and growth rate estimation in perennial ryegrass (Lolium perenne L.). This included design and build of the platform, development of an algorithm for volumetric estimation, and field validation of the system. The LiDAR-based volumetric estimates were compared against fresh weight and dry weight data across different ages of plants, seasons, stages of regrowth, sites, and row configurations.ResultsThe project had three phases, the last one comprising four experiments. Phase 1: a LiDAR-based, field-ready prototype mobile platform for perennial ryegrassrecognition in single row plots was developed. Phase 2: real-time volumetric data capture, modelling and analysis software were developed and integrated and the resultant algorithm was validated in the field. Phase 3. LiDAR Volume data were collected via the LiDAR platform and field-validated in four experiments. Expt.1: single-row plots of cultivars and experimental diploid breeding populations were scanned in the southern hemisphere spring for biomass estimation. Significant (P < 0.001) correlations were observed between LiDAR Volume and both fresh and dry weight data from 360 individual plots (R2 = 0.89 and 0.86 respectively). Expt 2: recurrent scanning of single row plots over long time intervals of a few weeks was conducted, and growth was estimated over an 83 day period. Expt 3: recurrent scanning of single-row plots over nine short time intervals of 2 to 5 days was conducted, and growth rate was observed over a 26 day period. Expt 4: recurrent scanning of paired-row plots over an annual cycle of repeated growth and defoliation was conducted, showing an overall mean correlation of LiDAR Volume and fresh weight of R2 = 0.79 for 1008 observations made across seven different harvests between March and December 2018.ConclusionsHere we report development and validation of LiDAR-based volumetric estimation as an efficient and effective tool for measuring fresh weight, dry weight and growth rate in single and paired-row plots of perennial ryegrass for the first time, with a consistently high level of accuracy. This development offers precise, non-destructive and cost-effective estimation of these economic traits in the field for ryegrass and potentially other pasture grasses in the future, based on the platform and algorithm developed for ryegrass.

Highlights

  • In-field measurement of yield and growth rate in pasture species is imprecise and costly, limiting scientific and commercial application

  • Results obtained from manual measurements in this study suggest that a broad range of fresh weight (FW) and dry weight (DW) levels can be directly measured by Light detection and ranging (LiDAR) in perennial ryegrass (PRG)

  • A LiDAR-based system for real-time non-destructive measurement of vegetative biomass in relation to dry matter yield (DMY) accumulation in PRG single and paired-row plots was validated under different scenarios

Read more

Summary

Introduction

In-field measurement of yield and growth rate in pasture species is imprecise and costly, limiting scientific and commercial application. Our study proposed a LiDAR-based mobile platform for non-invasive vegeta‐ tive biomass and growth rate estimation in perennial ryegrass (Lolium perenne L.). This included design and build of the platform, development of an algorithm for volumetric estimation, and field validation of the system. It is important to accurately measure vegetative mass in crop and pasture plants, given the significance of this characteristic in global agricultural productivity and food supply [1, 2]. Precise measurement of vegetative mass, and fresh weight (FW) and dry weight (DW), will improve understanding of foliage yield and more complex traits such as drought tolerance [3], water use efficiency [4] and salinity tolerance [5] and assists in detecting association between molecular markers and these traits [6]. In managed landscapes, improved varieties of perennial grass provide amenity, anchor and enhance soil, and nutrition for ruminant animal production

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.