Abstract

AbstractNetwork structure development during cross‐linking photopolymerization of polyethylene glycol di‐acrylate and its mixture with a mono‐functional 2‐ethylhexyl acrylate was studied using real‐time proton NMR T2 relaxation analysis. The time resolution of the method is typically in the order of seconds. The results reveal largely heterogeneous origin of network build up at the intermediate stages of photocuring. Domains of nano‐gel are already formed on initial stages of UV‐curing where hardly any change in viscosity is observed. Upon increasing curing time the fraction of gel increases at the expence of sol, the molar mass of network chains decreases and the molar mass of sol increases. The presence of mono‐acrylate slows down the curing rate. The curing continues after UV‐illumination causing a significant increase in the amount of gel and cross‐link density in the gel. Thus, the NMR method is a valuable tool for characterization of the kinetics of photopolymerization, the development of molecular structure and the resultant molecular scale heterogeneity during photocuring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.