Abstract
Real-time nearfield acoustic holography (RT-NAH) is an effective tool to identify nonstationary sound sources and predict the time-dependent sound field via a temporal convolution between the time-dependent wavenumber spectrum on the hologram plane and an impulse response. However, the conventional RT-NAH procedures are developed for sound sources situated in a static medium. As for sound sources located in a moving medium, the conventional RT-NAH procedures cannot be applied directly due to the fact that the impulse response will be changed by flow effects. In this paper, two analytical impulse responses in a uniformly moving medium, corresponding to two cases that the flow direction is parallel to and perpendicular to the hologram plane, are derived first with consideration of flow effects, and then RT-NAH is extended to realize forward and backward propagation of time-dependent signals in the moving medium. Numerical simulations are conducted to check the performances of the proposed method. The results show that the proposed method not only can be used to predict nonstationary sound fields but also can be utilized to identify nonstationary sources in a moving medium for both the parallel and perpendicular cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.