Abstract
The JET neutron profile monitor provides the measurement of the neutron flux along 19 collimated lines of sight from which the neutron emissivity profile can be obtained through reconstruction based on inversion methods. The neutron detectors are liquid organic scintillators featuring n/γ pulse shape discrimination. A recent digital upgrade of the neutron profile monitor acquisition system (200MSamples/s sampling rate per channel, 14 bit resolution) offers new real-time capabilities. An algorithm performing real-time n/γ discrimination by means of the charge comparison method is implemented in the acquisition system FPGA. The algorithm produces two distinct count rates (n and γ) that are sent to the JET real time network ready for control applications and are simultaneously stored into the JET archive together with all the samples of each pulse. The paper describes the architecture of the FPGA implementation and reports the analysis of data collected during the 2011–2012 JET campaigns. The comparison between the real-time and post-processed (off-line) neutron count rates shows an agreement within 5% for all 19 detectors. Moreover, it is shown that the maximum count rate sustainable by the acquisition system when storing raw data (∼900kHz as evaluated in laboratory tests) can be extended up to 5MHz when using the real-time implementation with no local data storage. Finally, a statistical analysis of the ratio between the line-integrated measurements from the neutron profile monitor and the neutron rate from the JET neutron monitors is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.