Abstract
Real-time multiple event analysis is important for reliable situational awareness and secure operation of the power system. Multiple sequential events can induce complex superimposed pattern in the data and are challenging to analyze in real time. This paper proposes a method for accurate detection, temporal localization, and classification of multiple events in real time using synchrophasor data. For detection and temporal localization, a Teager–Kaiser energy operator (TKEO) based method is proposed. For event classification, a time series classification based method using energy similarity measure (ESM) is proposed. The proposed method is tested for simulated multiple event cases in the IEEE-118 bus system using DigSilent/PowerFactory and real PMU data for the Indian grid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.