Abstract
Severe mental disorder is recognized as Depression. State of low mood and aversion to activity causes abnormal behavior of a person in both professional and daily lives. As per WHO, around 350 million people worldwide are victimized by depression. Importance of automated real time mental health analysis is increasing day by day. In this paper, we proposed a system of automated depression diagnosis. This is a new approach to predict the depression severity corresponding to HAM-D score values obtained from prediction models. The proposed framework is designed keeping in mind a multi-modal approach, aiming at capturing facial characteristics, speech properties and brain waves. Further, a decision fusion technique has been implemented to integrate the obtained information in real-time. Using statistical features extracted from the speech recording, facial video and EEG data, the individual prediction models classify the subject according to severity of depression and the outputs are then fused to increase the performance parameters. The training data was obtained from 50 subjects, who provided all three recordings necessary for analysis. In unimodal systems the EEG data provides 80%, Speech 78% and Facial recording 72% accuracy, which is much inferior to a multimodal framework which provides 92% accuracy. The experimental results show that the proposed multimodal framework significantly improves the depression prediction performance, compared to other techniques. Inferior to a multimodal framework which provides 92% accuracy. The experimental results show that the proposed multimodal framework significantly improves the depression prediction performance, compared to other techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.