Abstract
In this article, parallel implementation of a real-time intelligent video surveillance system on Graphics Processing Unit (GPU) is described. The system is based on background subtraction and composed of motion detection, camera sabotage detection (moved camera, out-of-focus camera and covered camera detection), abandoned object detection, and object-tracking algorithms. As the algorithms have different characteristics, their GPU implementations have different speed-up rates. Test results show that when all the algorithms run concurrently, parallelization in GPU makes the system up to 21.88 times faster than the central processing unit counterpart, enabling real-time analysis of higher number of cameras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.