Abstract

High efficiency video coding (HEVC) is the latest video coding standard aimed to replace the H.264/AVC standard according to its high coding performance, which allows it to be mostly suitable for application in high definition videos. However, this performance is accompanied by a high computational complexity due principally to the motion estimation (ME) algorithm. As in H.264/AVC, the ME in HEVC is a highly computational demanding part that takes the largest part of the whole encoding time. Hence, many fast algorithms have been proposed in order to reduce computation, but, the majority, do not study how they can be effectively implemented by hardware. In this paper, two hardware architectures of the diamond pattern search algorithm for HEVC video coding with sequential and parallel techniques, are proposed. These architectures are based on parallel processing techniques. The sequential and parallel VHDL codes have been verified and can achieve at a high frequency on a Virtex-7 field-programmable gate-array design (FPGA) circuit. Compared to other designs, our parallel design provides better efficient implementation of available resources on FPGA. Our architecture can meet the real-time processing of the FHD @ 30 frames per second.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.