Abstract

Ni x Fe 3 − x O4 thin films with varying Ni amount (0 ≤ x ≤ 1.5) were deposited on MgO(001) via reactive molecular beam epitaxy. The growth process was monitored during film deposition by means of X-ray diffraction. All prepared films exhibit a well-ordered structure with complete vertical crystallinity throughout the whole film growth and flat surfaces of the final films independent of the Ni amount. An enhancement of the vertical compression in the initial growth continuously decreases up to a film thickness of 8 nm. During further growth, all films exhibit residual and constant vertical compression with lateral adaption of the final films to the substrate lattice, as observed by high energy surface X-ray diffraction experiments. Hard X-ray photoelectron spectroscopy measurements of the final films reveal increasing Fe3+:Fe2+ ratios for higher Ni content and point to additional NiO agglomerations within the films exceeding the stoichiometric Ni amount of x = 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.