Abstract

Cell migration plays a vital role in carcinoma invasion and metastasis. Cell regulatory volume decrease (RVD), a mechanism of adjusting cell volume, is a basic physiological function of cells, which is closely related to cell migration. In this work, a quartz crystal microbalance (QCM) cytosensor was first developed for real-time monitoring of cell RVD to evaluate the migration of human breast cancer cells. While stimulating the immobilized cells on the chip with hypotonic solutions, the temporal dynamics of RVD can be tracked by QCM sensor via analyzing frequency shifts during the cell swelling and shrinkage. The results showed that, due to the difference in cell migration capability, the level of RVD for MCF-7 cells and MDA-MB-231 cells was 32.8 ± 2.9% and 49.7 ± 4.2% ( n = 3), respectively. Furthermore, tamoxifen, a chloride channel blocker, was used to suppress cell RVD, indicating concentration dependence and inhibition difference in both types of cells. Combining QCM measurement with cell migration assay, the results showed that the blockage of RVD was positively correlated to the inhibition of cell migration with tamoxifen concentration ranging from 5 to 60 μM, which revealed the relation between cell RVD and cell migration. The study provided a noninvasive and real-time strategy for monitoring cell RVD as well as assessing cell migration, which was expected to supply a new diagnostic tool for metastatic cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call