Abstract

A real time method for monitoring the drug load and release on graphene oxide (GO) in a cuvette is reported using rhodamine B (RB) as a model for a drug. The mechanisms of the release of RB at different pH were investigated, by monitoring the time dependency of the accumulative drug release. In vitro real time experimental results indicated that RB could be loaded on GO with a capacity of 0.5 mg/mg. The drug release of RB was pH sensitive as observed at pH 7.4 and pH 4.5 PBS solutions. The higher pH values lead to weaker hydrophobic force and hydrogen bonds, and thus higher release rate. The ionic strength also influenced the release of RB, as shown from the different release rates between PBS solutions and double distilled water. These results indicated a case II transport process at pH 7.4 and an anomalous diffusion process at pH 4.5 and in water. The method described here allows real time detection of the drug release rate, in contrast to common dialysis analysis. This method also points to other real time detections in biomedical investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.