Abstract

Intramolecular proton transfer of hypoxanthine, induced by application of a laser on the surface of a bare noble nanomaterial, was monitored in real time using surface-enhanced Raman spectroscopy (SERS). This monitoring demonstrated the dependence of the reaction on the identity of the nanomaterial and on the laser power density. The results pave the way for monitoring the proton transfer reaction in various relevant fields. In addition, we observed the presence of the proton transfer phenomenon of hypoxanthine in serum, providing a way to avoid the effect of proton transfer and hence achieve more reliable spectra of sera for clinical diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call