Abstract
We present a new approach for real-time monitoring of PCR amplification of a specific sequence from the human c-MYC proto-oncogene using a Ta2O5 electrolyte–insulator–semiconductor (EIS) sensor. The response of the fabricated EIS sensor to cycle DNA amplification was evaluated and compared to standard SYBR-green fluorescence incorporation, showing it was possible to detect DNA concentration variations with 30mV/μM sensitivity. The sensor's response was then optimized to follow in real-time the PCR amplification of c-MYC sequence from a genomic DNA sample attaining an amplification profile comparable to that of a standard real-time PCR. Owing to the small size, ease of fabrication and low-cost, the developed Ta2O5 sensor may be incorporated onto a microfluidic device and then used for real-time PCR. Our approach may circumvent the practical and economical obstacles posed by current platforms that require an external fluorescence detector difficult to miniaturize and incorporate into a lab-on-chip system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.