Abstract
Förster Resonance Energy Transfer (FRET) has become a powerful tool for monitoring protein folding, interaction and localization in single cells. Biosensors relying on the principle of FRET have enabled real-time visualization of subcellular signaling events in live cells with high temporal and spatial resolution. Here, we describe the application of a genetically encoded Bile Acid Sensor (BAS) that consists of two fluorophores fused to the farnesoid X receptor ligand binding domain (FXR-LBD), thereby forming a bile acid sensor that can be activated by a large number of bile acids species and other (synthetic) FXR ligands. This sensor can be targeted to different cellular compartments including the nucleus (NucleoBAS) and cytosol (CytoBAS) to measure bile acid concentrations locally. It allows rapid and simple quantitation of cellular bile acid influx, efflux and subcellular distribution of endogenous bile acids without the need for labeling with fluorescent tags or radionuclei. Furthermore, the BAS FRET sensors can be useful for monitoring FXR ligand binding. Finally, we show that this FRET biosensor can be combined with imaging of other spectrally distinct fluorophores. This allows for combined analysis of intracellular bile acid dynamics and i) localization and/or abundance of proteins of interest, or ii) intracellular signaling in a single cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.