Abstract

Exosomes secreted from cells carry rich information from their parent cells, representing a promising biomarker for investigation of diseases. We develop a dual-nanopore biosensor using DNA aptamers to specifically recognize CD63 protein on the exosome's surface, which enables label-free exosome detection based on ionic current change. The sensor allows for sensitive detection of exosomes with a detection limit of 3.4 × 106 particles/mL. The dual-nanopore biosensor was able to form an intrapipette electric circuit for ionic current measurement due to its unique structure, which is crucial to achieve detection of exosome secretion from a single cell. We utilized a microwell array chip to entrap a single cell into a confined microwell with small volume, enabling the accumulation of exosomes with high concentration. The dual-nanopore biosensor was positioned into the microwell with a single cell, and monitoring of exosome secretion from a single cell in different cell lines and under different stimulations has been achieved. Our design may provide a useful platform for developing nanopore biosensors for detecting cell secretions from a single living cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call