Abstract

The real-time electrochemical detection of catecholamine secretion from murine adrenal slices using fast-scan cyclic voltammetry (FSCV) and amperometry at carbon fiber microelectrodes is described. Bright-field and immunofluorescent microscopy supported that chromaffin cells in the adrenal medulla are organized into clusters and positively stain for tyrosine hydroxylase confirming that they are catecholaminergic. Spontaneous exocytotic catecholamine events were observed inside chromaffin cell clusters with both FSCV and amperometry and were modulated by the nicotinic acetylcholine receptor antagonist hexamethonium and low extracellular calcium. Reintroduction of extracellular calcium and pressure ejection of acetylcholine caused the frequency of spikes to increase back to predrug levels. Electrical stimulation caused the synchronous secretion from multiple cells within the gland, which were modulated by nicotinic acetylcholine receptors but not muscarinic receptors or gap junctions. Furthermore, electrically stimulated release was abolished with perfusion of low extracellular calcium or tetrodotoxin, indicating that the release requires electrical excitability. An extended waveform was used to study the spontaneous and stimulated release events to determine their chemical content by FSCV. Consistent with total content analysis and immunohistochemical studies, about two thirds of the cells studied spontaneously secreted epinephrine, whereas one third secreted norepinephrine. Whereas adrenergic sites contained mostly epinephrine during electrical stimulation, noradrenergic sites contained a mixture of the catecholamines showing the heterogeneity of the adrenal medulla.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.