Abstract
Abstract Process control strategies based on the physiological status of cells have recently been used to enhance mammalian cell culture productivity and robustness. In this study, we investigated the feasibility of using full-spectrum dielectric spectroscopy for detecting shifts in cell physiology and as a feedback tool to increase process efficiency. Multi-frequency permittivity spectra were collected from cell culture processes in which apoptosis was induced by glucose depletion, nutrient depletion, or chemical treatment. Meanwhile, key parameters of critical frequency (fc) and Cole-Cole alpha (α) were calculated in real time from the β-dispersion curve and correlated to data from off-line viability measurements. Results show that physiological changes in apoptotic cells were reflected in the on-line parameters earlier than from off-line methods. Using information from the on-line parameters, we achieved partial or full recovery from early apoptosis by replenishing the depleted feed. We also demonstrate that by using trends in fc, we could detect a deviation in media preparation in a manufacturing process which could not be achieved using conventional measurements. The results demonstrate that full-spectrum dielectric spectroscopy can be used as a facile tool for early detection of physiological changes and process adjustment in real-time to enhance bioreactor process productivity and robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.