Abstract

A dynamic process model for the simulation of nanoparticle fractionation in tubular centrifuges is presented. Established state-of-the-art methods are further developed to incorporate multi-dimensional particle properties (traits). The separation outcome is quantified based on a discrete distribution of particle volume, elongation and flatness. The simulation algorithm solves a mass balance between interconnected compartments which represent the separation zone. Grade efficiencies are calculated by a short-cut model involving material functions and higher dimensional particle trait distributions. For the one dimensional classification of fumed silica nanoparticles, the numerical solution is validated experimentally. A creation and characterization of a virtual particle system provides an additional three dimensional input dataset. Following a three dimensional fractionation case study, the tubular centrifuge model underlines the fact that a precise fractionation according to particle form is extremely difficult. In light of this, the paper discusses particle elongation and flatness as impacting traits during fractionation in tubular centrifuges. Furthermore, communications on separation performance and outcome are possible and facilitated by the three dimensional visualization of grade efficiency data. Future research in nanoparticle characterization will further enhance the models use in real-time separation process simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call