Abstract
Two separate goals should be jointly pursued in wastewater treatment: nutrient removal and energy conservation. An efficient controller performance should cope with process uncertainties, seasonal variations and process nonlinearities. This paper describes the design and testing of a model predictive controller (MPC) based on neuro-fuzzy techniques that is capable of estimating the main process variables and providing the right amount of aeration to achieve an efficient and economical operation. This algorithm has been field tested on a large-scale municipal wastewater treatment plant of about 500,000 PE, with encouraging results in terms of better effluent quality and energy savings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.