Abstract

Frequency-modulated continuous wave radar systems suffer from permanent leakage of the transmit signal into the receive path. Besides leakage within the radar device itself, an unwanted object placed in front of the antennas causes so-called short-range (SR) leakage. In an automotive application, for instance, it originates from signal reflections of the car’s own bumper. Particularly the residual phase noise of the downconverted SR leakage signal causes a severe degradation of the achievable sensitivity. In an earlier work, we proposed an SR leakage cancellation concept that is feasible for integration in a monolithic microwave integrated circuit. In this brief, we present a hardware prototype that holistically proves our concept with discrete components. The fundamental theory and properties of the concept are proven with measurements. Further, we propose a digital design for real-time operation of the cancellation algorithm on a field programmable gate array. Ultimately, by employing measurements with a bumper mounted in front of the antennas, we show that the leakage canceller significantly improves the sensitivity of the radar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.