Abstract

We report in situ high-resolution transmission electron microscopy observing the shrinkage of single-layer giant fullerenes (GF). At temperatures approximately 2000 degrees C, the GF volume reduces by greater than one 100-fold while the fullerene shell remains intact, evolving from a slightly polygonized to a nearly spherical shape with a smaller diameter. The number of carbon atoms in the GF decreases linearly with time until the small subbuckyball cage opens and rapidly disappears. Theoretical modeling indicates that carbon atoms are removed predominantly from the weakest binding energy sites, i.e., the pentagons, leading to the constant evaporation rate. The fullerene cage integrity is attributed to the collective behavior of interacting defects. These results constitute the first experimental evidence for the "shrink-wrapping" and "hot-giant" fullerene formation mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.