Abstract
To deal with uncertainties of renewable energy, demand and price signals in real-time microgrid operation, this paper proposes a model predictive control strategy for microgrid economic dispatch, where hourly schedule is constantly optimized according to the current system state and latest forecast information. Moreover, implicit network topology of the microgrid and corresponding power flow constraints are considered, which leads to a mixed integer nonlinear optimal power flow problem. Given the non-convexity feature of the original problem, the technique of conic programming is applied to efficiently crack the nut. Simulation results from a reconstructed IEEE-33 bus system and comparisons with the routine day-ahead microgrid schedule sufficiently substantiate the effectiveness of the proposed MPC strategy and the conic programming method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.