Abstract

Excimer laser fragmentation-fluorescence spectroscopy (ELFFS) is a viable technique for real-time monitoring of carbonaceous particles in combustion exhausts. The exhaust from a single-cylinder two-stroke engine is diluted and diverted into the laser interrogation region, resulting in a particle concentration of approximately 1 × 107/cm3. Light from a 193 nm ArF laser photofragments the particles and then produces fluorescence from the atomic carbon fragments at 248 nm, CH fragments at 431 nm, and C2 fragments at 468 nm. The atomic carbon fluorescence signal is proportional to the number concentration of particles in the laser interrogation region. The 100-shot (1 s) detection limit for particles in the exhaust is 1 mg/m3, expressed as a mass concentration of particulate matter. Interferences from carbon monoxide and carbon dioxide are negligible. The relative fluorescence yield at 248 nm is four times greater from particles than from the gas phase hydrocarbons present in the exhaust. This high yield suggests that the gas phase hydrocarbon interference would not be problematic for measurements of diesel exhaust, where the ratio of particulate carbon to gas phase hydrocarbon is high.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.