Abstract
New-generation stented bioprostheses coupled with better imaging modalities are expanding the clinical utility of transcatheter aortic valve replacement (TAVR). This study aimed at evaluating the feasibility of real-time cardiovascular magnetic resonance (rtCMR) -guided TAVR using the Medtronic Engager aortic valve system in a preclinical model. The Engager delivery device was slightly modified to make it CMR-compatible. Ten Yucatan swine underwent rtCMR-guided transapical TAVR. Postplacement phase-contrast and first-pass perfusion CMR sequences were used to evaluate for aortic regurgitation and myocardial perfusion, respectively. Real-time CMR provided excellent visualization of cardiac anatomy during TAVR. Nine of 10 animals had proper valve placement in the aortic annulus as determined by CMR and confirmed by necropsy inspection. Postplacement phase-contrast scans confirmed no intravalvular or paravalvular leaks. Perfusion scans demonstrated sufficient coronary flow. Roentgenographs confirmed proper placement of the prostheses. The Engager valve can be implanted transapically under rtCMR guidance with a modified, CMR-compatible delivery device in a preclinical model. Cardiovascular magnetic resonance allowed for accurate preplacement evaluation, real-time guidance, and postplacement functional assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.