Abstract

Surface chemistry and nanoscale surface morphology are both influential factors for cell adhesion, growth, and differentiation. In particular, cell migration is one of the major markers of initial immune response activation to implanted biomaterials. Despite their indication, it has been difficult to directly examine macrophages on nanoscale materials, because most nanomaterials possess greater thicknesses than nanoscale. This study developed transparent films comprising a carbon nanotube and polymer composite with controlled surface stiffness and nanoscale roughness. As nanoscale surface topography can incite immune cell activation, analysis of the real-time cell migration (including velocity) of macrophages due to changes in nanoscale surface topography of a biopolymer can support the direct relationship between initial macrophage dynamics and corresponding pro-inflammatory responses. Through real-time analysis, we have identified that surface chemistry and surface nanoscale topography are both independent factors mediating macrophage interactions, and, thus, immune cell behavior can be further controlled by the systematic variation of nanoscale surface topography for a given surface chemistry. Considering that the initial immune response can determine the fate and lifetime of implanted biomaterials, this study presents the direct relationship between initial macrophage dynamics and subsequent inflammatory cytokine release on transparent carbon nanotube polymer composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call