Abstract
The theory of the natural numbers with linear order and monadic predicates underlies propositional linear temporal logic. To study temporal logics that are suitable for reasoning about real-time systems, we combine this classical theory of infinite state sequences with a theory of discrete time, via a monotonic function that maps every state to its time. The resulting theory of timed state sequences is shown to be decidable, albeit nonelementary, and its expressive power is characterized by ω-regular sets. Several more expressive variants are proved to be highly undecidable. This framework allows us to classify a wide variety of real-time logics according to their complexity and expressiveness. Indeed, it follows that most formalisms proposed in the literature cannot be decided. We are, however, able to identify two elementary real-time temporal logics as expressively complete fragments of the theory of timed state sequences, and we present tableau-based decision procedures for checking validity. Consequently, these two formalisms are well-suited for the specification and verification of real-time systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.