Abstract

The proliferation of the Internet of Things (IoT) has fostered growing attention to real-time locating systems (RTLSs) using radio frequency identification (RFID) for asset management, which can automatically identify and track physical objects within indoor or confined environments. Various RFID indoor locating systems have been proposed. However, most of them are inappropriate for large-scale IoT applications owing to severe radio multipath, diffraction, and reflection. In this paper, we propose a newly fashioned RTLS using active RFID for the IoT, i.e., iLocate, which locates objects at high levels of accuracy up to 30 cm with ultralong distance transmission. To achieve fine-grained localization accuracy, iLocate presents the concept of virtual reference tags. To overcome signal multipath, iLocate employs a frequency-hopping technique to schedule RFID communication. To support large-scale RFID networks, iLocate leverages the ZigBee. We implement all hardware using 2.45-GHz RFID chips so that each active tag can communicate with readers that are around 1000 m away in a free space. Our empirical study and real project deployment show the superiority of the proposed system with respect to the localization accuracy and the data transmission rate for large-scale active RFID networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.