Abstract

Lithium-ion batteries are key elements in the development of electrical energy storage solutions. However, due to cycling, environmental, and operating conditions, battery capacity tends to degrade over time. Capacity fade is a common indicator of battery state of health (SOH) because it is an indication of how the capacity has been degraded. However, battery capacity cannot be measured directly, and thus, there is an urgent need to develop methods for estimating battery capacity in real time. By analyzing the historical data of a battery in detail, it is possible to predict the future state of a battery and forecast its remaining useful life. This study developed a real-time, simple, and fast method to estimate the cycle capacity of a battery during the charge cycle using only data from a short period of each charge cycle. This proposal is attractive because it does not require data from the entire charge period since batteries are rarely charged from zero to full. The proposed method allows for simultaneous and accurate real-time prediction of the health and remaining useful life of the battery over its lifetime. The accuracy of the proposed method was tested using experimental data from several lithium-ion batteries with different cathode chemistries under various test conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.