Abstract
It is challenging to distinguish the defective areas using infrared thermography to automatically analyze external post-tensioned tendon duct grouting defects. To achieve efficient and stable automated detection, a lightweight real-time grouting defects detection method based on YOLO deep learning is proposed. Firstly, the Cutpaste data augmentation method was used to effectively alleviate the problem of overfitting. Then, the C3Ghost module was introduced into the neck network, and the number of channels in the network layers was adjusted to 50 % of those in the YOLOv5s model, reducing the number of parameters and computational resources. Finally, the SGD optimizer and GIOU loss function, as well as the Sim attention module, were used to improve detection accuracy. Based on instance analysis and comparison, this method achieves mAP@0.5 of 96.9 % and detection speed of 66FPS. Compared with YOLOv5s, it reduces the number of parameters by 79 % and FLOPs by 77 %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.