Abstract

Recommendation systems play an important role in today’s digital world. They have found applications in various areas such as music platforms, e.g., Spotify, and movie streaming services, e.g., Netflix. Less research effort has been devoted to physical exercise recommendation systems. Sedentary lifestyles have become the major driver of several diseases as well as healthcare costs. In this paper, we develop a recommendation system to recommend daily exercise activities to users based on their history, profiles and similar users. The developed recommendation system uses a deep recurrent neural network with user-profile attention and temporal attention mechanisms. Moreover, exercise recommendation systems are significantly different from streaming recommendation systems in that we are not able to collect click feedback from the participants in exercise recommendation systems. Thus, we propose a real-time, expert-in-the-loop active learning procedure. The active learner calculates the uncertainty of the recommendation system at each time step for each user and asks an expert for recommendation when the certainty is low. In this paper, we derive the probability distribution function of marginal distance, and use it to determine when to ask experts for feedback. Our experimental results on a mHealth and MovieLens datasets show improved accuracy after incorporating the real-time active learner with the recommendation system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.