Abstract

With the growing interest for augmented reality devices, holography is often considered as a promising technology to overcome the focus issues of conventional stereoscopic displays. To enlarge the field of view of holographic head-mounted displays, a Fourier transform optical system (FTOS) has been proposed. However, since the scene geometry is distorted by the FTOS, it is necessary to compensate the position of each scene point during the hologram computation, resulting in long calculation times. In this paper, we propose a real-time computer-generated hologram calculation method for the FTOS. Whereas previously proposed methods used a ray-tracing approach to compensate the distortion induced by the FTOS, our proposed method relies on a layer-based approach. Experimental results show that our method is able to compute holograms of resolution (3840×2160) in real time at 24 frames per second, enabling its use in augmented reality applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call