Abstract

How axons are wiring the vertebrate spinal cord has in particular been studied at the ventral floor plate using fixed samples or looking at single growing axons with various microscopy techniques. Thereby may remain hidden important live organismal scale information concerning dynamics and concurrent timing of the many axons simultaneously crossing the floor plate. Here then, applying light-sheet microscopy, axonal growth and guidance at the floor plate are followed in vivo in real time at high resolution along several hundred micrometers of the zebrafish spinal cord by using an interneuron expressing GFP as a model axon. The commissural axons are observed crossing the ventral floor plate midline perpendicularly at about 20 microns/h and in a manner dependent on the Robo3 receptor. Commissural growth rate reaches a minimum at the midline, confirming previous observations. Ipsilateral axons extend concurrently, at three to six times higher growth rates. At guidance points, commissural axons are seen to decrease their growth rate and growth cones increase in size. Commissural filopodia appear to interact with the nascent neural network, and thereby trigger immediate plastic and reversible sinusoidal-shaped bending movements of neighboring commissural shafts. A simple protocol isolating single neuronal cells from the spinal cord is developed to facilitate further molecular characterization. The recordings show the strikingly stereotyped spatio-temporal control that governs midline crossing. The live observations give renewed perspective on the mechanisms of axonal guidance in the spinal cord that provide for a discussion of the current distinction between diffusible long-range versus substrate-bound short-range guidance cues.

Highlights

  • How axons are wired up in an organism is an open and interesting question

  • It is not surprising that many of the known axonal guidance receptorligand pairs have been characterized in conjunction with studact with the nascent neural network, and thereby trigger ies of axons crossing the midline; including the classical four immediate plastic and reversible sinusoidal-shaped bending movements of neighboring commissural shafts

  • After having crossed the floor plate, three commissural axons in three different segments are growing in spatio-temporal synchrony at an obliquely ascending asymptotic angle most likely to join the dorsal longitudinal fasciculus (DLF) (Fig. 2a; rostral is right)

Read more

Summary

Introduction

Axons specified as ipsilateral are found on either side of the midline (ipsilateral, contralateral), whereas the commissural axons cross the midline and connect the two body halves (de Ramon Francàs et al, 2017; Sakai and Kaprielian, 2012; Graphical Abstract in the Appendix). A simple protocol isolating single neuronal cells from the spinal sets of receptor-ligand molecules: Robos-Slits, DCCs-Netrins, Plexins-Semaphorins and Ephs-Ephrins (Chédotal, 2019; de Ramon Francàs et al, 2017; Kolodkin and Tessier-Lavigne, 2011; cord is developed to facilitate further molecular charac- Stoeckli, 2018; Tessier-Lavigne and Goodman, 1996)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call