Abstract

Thermal poling could make centrosymmetric fused silica optical fibers generate second-order nonlinearity effect and linear electooptic effect. In order to investigate the influence of thermal poling parameters on linear electooptic effect, a real-time test system, which mainly consists of an all polarization maintaining fiber Mach-Zehnder interferometer, has been utilized to monitor the whole thermal poling process in fibers. The processing parameters in thermal poling, such as applied poling voltage, poling duration and temperature, have been measured in real time. Based on those measurements, their influence on the linear electrooptic effect has been discussed. Experiment results show that the linear electrooptic coefficient would increase when a stronger electric field is applied on fibers. Considering the anti-high-voltage breakdown capability of fibers, a DC voltage from 3KV to 4KV is suitable for polarization in thermal poling. When using 3KV, the optimum poling duration is about 16 minutes and the best temperature for thermal poling is around 190°C. Keywords: electro-optic effect, poled fiber, thermal poling, real time test system, fiber optic interferometer

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.