Abstract

In a practical light emitted diodes (LEDs)-based visible light communication (VLC) system, high-speed transmission is generally limited by the LED bandwidth. To address the bandwidth limitation, a hybrid digital linear and decision-feedback equalization (DFE) is investigated to improve the transmission performance (or spectral efficiency) in the carrier-less amplitude phase modulation (CAP)-based VLC systems. A real-time CAP-VLC transceiver with the hybrid digital equalization is designed, based on which 200 Mb/s transmission is successfully demonstrated over a 15 m VLC link with the commercial red LEDs (bandwidth: 6.5 MHz). In the real-time CAP-VLC system, the baseline wander (BLW) is observed, due to the removal of the low-frequency components with a direct current (DC) block. The BLW effect can be mitigated by increasing the roll-off factor. However, this roll-off factor affects the equalization performance, due to an increased loss in the signal spectrum beyond the system bandwidth. Optimization of the roll-off factor and filter length is required. Experimental results show that, with the optimized real-time transceiver design, the hybrid Wiener/recursive least squares (RLS) and DFE significantly improves the error vector magnitude (EVM) performance compared with the DFE. In addition, the digital signal processing (DSP) complexity is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.