Abstract
Real-time imaging of regulated exocytosis in secreting organs can provide unprecedented temporal and spatial detail. Here, we highlight recent advances in 3D time-lapse imaging in Drosophila salivary glands at single-granule resolution. Using fluorescently labeled proteins expressed in the fly, it is now possible to image the dynamics of vesicle biogenesis and the cytoskeletal factors involved in secretion. 3D imaging over time allows one to visualize and define the temporal sequence of events, including clearance of cortical actin, fusion pore formation, mixing of the vesicular and plasma membranes and recruitment of components of the cytoskeleton. We will also discuss the genetic tools available in the fly that allow one to interrogate the essential factors involved in secretory vesicle formation, cargo secretion and the ultimate integration of the vesicular and plasma membranes. We argue that the combination of high-resolution real-time imaging and powerful genetics provides a platform to investigate the role of any factor in regulated secretion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.