Abstract
The predator algorithm is a representative pioneering work that achieves state-of-the-art performance on several popular visual tracking benchmarks and with great success when commercially applied to real-time face tracking in long-term unconstrained videos. However, there are two major drawbacks of predator algorithm when applied to inland CCTV (closed-circuit television) ship tracking. First, the LK short-term tracker within predator algorithm easily tends to drift if the target ship suffers partial or even full occlusion, mainly because the corner-points-like features employed by LK tracker are very sensitive to occlusion appearance change. Second, the cascaded detector within the predator algorithm searches for candidate objects in a predefined scale set, usually including 3-5 elements, which hampers the tracker to adapt to the potential diverse scale variations of the target ship. In this paper, we design a random projection based short-term tracker which can dramatically ease the tracking drift when the ship is under occlusion. Furthermore, a forward-backward feedback mechanism is proposed to estimate the scale variation between two consecutive frames. We prove that these two strategies gain significant improvements over the predator algorithm and also show that the proposed method outperforms several other state-of-the-art trackers.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.