Abstract

We show that high-dimensional econometric models, such as shrinkage and complete subset regression, perform very well in the real-time forecasting of inflation in data-rich environments. We use Brazilian inflation as an application. It is ideal as an example because it exhibits a high short-term volatility, and several agents devote extensive resources to forecasting its short-term behavior. Thus, precise forecasts made by specialists are available both as a benchmark and as an important candidate regressor for the forecasting models. Furthermore, we combine forecasts based on model confidence sets and show that model combination can achieve superior predictive performances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.