Abstract

Spectral unmixing amounts to automatically finding the signatures of pure spectral components (called endmembers in the hyperspectral imaging literature) and their associated abundance fractions in each pixel of the hyperspectral image. Many algorithms have been proposed to automatically find spectral endmembers in hyperspectral data sets. Perhaps one of the most popular ones is the pixel purity index (PPI), which is available in the ENVI software from Exelis Visual Information Solutions. This algorithm identifies the endmembers as the pixels with maxima projection values after projections onto a large randomly generated set of random vectors (called skewers). Although the algorithm has been widely used in the spectral unmixing community, it is highly time consuming as its precision asymptotically increases. Due to its high computational complexity, the PPI algorithm has been recently implemented in several high-performance computing architectures, including commodity clusters, heterogeneous and distributed systems, field programmable gate arrays, and graphics processing units (GPUs). In this letter, we present an improved GPU implementation of the PPI algorithm, which provides real-time performance for the first time in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.