Abstract

For precise application, it is imperative to provide accurate and stable performance. The feed flow rate of a syringe fluid dispensing system is regulated through a Proportional- Integral-Derivative (PID) and Active Force Control (AFC) control scheme that was actuated using a DC servo motor considering a real-time implementation. The focus of this study is to control the speed of a DC motor by implementing an AFC strategy in rejecting the disturbance in the system. The AFC is implemented by cascading its control loop with the outer PID controller loop to form a two degree-of-freedom (DOF) controller. The performance of the proposed PID with AFC control scheme was investigated considering both the theoretical simulation and experimental works. The simulation was performed in MATLAB/Simulink computing platform while the real-time experimentation was done by utilising the Arduino MEGA 2560 microcontroller with MATLAB/Simulink driver for the data acquisition, interface and control implementation. The results implies the robustness of the AFC-based system in controlling the feed flow rate of the fluid in the dispenser. The best performance is obtained for 100% AFC with the disturbance due to vibration almost completely compensated via the proposed scheme in comparison to the PID counterpart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call