Abstract
Optimising the performance of power system networks using conventional methods is quite difficult because of the complex nature of systems that are highly non-linear and non-stationary. In this study a hybrid adaptive fuzzy hysteresis current controller for shunt active power filter (SAPF) is proposed. The conventional adaptive hysteresis concept is hybridised with fuzzy logic controller (FLC), which facilitates discarding of uncertainty in the system. In fact, conventional proportional-integral (PI) controllers for shunt active filter are based on a linearised model that fails to react under transient events. On the other side, FLC has widened its applicability to many engineering fields and offers satisfactory results for a wide variety of operating conditions. It helps in fulfilling the need for perfection, such as stability and robustness for every system. All this motivated to adopt FLC for SAPF applications. By incorporating an adaptive fuzzy hysteresis band, active power filter (APF) gains outstanding compensation ability under steady-state and transient conditions. To validate the proposed approach, the system is implemented on a real-time digital simulator and adequate results are reported for its verification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.