Abstract

We address the two dominant dilemmas encountered in attempting to demonstrate real-time hyperspectral imaging: how to record a three-dimensional spectral data cube with a conventional two-dimensional detector array and how to most efficiently transmit the spectral data cube through the information bottleneck constituted by the detector’s limited space–bandwidth product. We have demonstrated a new, biologically inspired approach in which a compact hyperspectral fovea is embedded within a conventional panchromatic periphery. Combined with an intelligent scanning system this will enable hyperspectral imaging to be applied only to small regions of interest previously identified using the panchromatic periphery, thus improving the efficiency with which hyperspectral imaging can be used to recognize objects in a scene. The hyperspectral fovea is realized using a coherent optical fibre bundle that reformats a two-dimensional input image into a linear output image that acts as the input to a one-dimensional, dispersive hyperspectral imager.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.