Abstract

Background The transcription factor NF-AT plays a key role in the activation of many early immune response genes and is regulated by subcellular localization. NF-AT translocates from the cytoplasm to the nucleus then returns in response to the intracellular calcium level. Methods We have investigated NF-AT nucleocytoplasmic shuttling in real-time in living cells using NF-ATc1 tagged with the reversibly photoswitchable fluorescence protein, Dronpa. We monitored both nuclear import and export rate of Dronpa-tagged NF-AT in live cells upon stimulation with ionomycin plus calcium (I + Ca 2+) or cyclosporin A (CsA). Results The results show that NF-AT moved into the nucleus within 3–9 min after stimulation and moved back out into the cytoplasm within 15–50 min after CsA addition. In the absence of stimulation, NF-AT stayed in the cytoplasm as in the cells overexpressing GSK-3β, a calcineurin-opposing regulator. General Significance This semi-quantitative imaging with constant fluorescence provides the basis to detect the real-time effect by several regulators on NF-AT family proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.