Abstract
In the field of sports biomechanics and rehabilitation engineering, the possibility of computing, in real time, the angular displacements and derivatives of human joints, from a video of motion sequences, represents an appealing goal. In particular, applications of biofeedback protocols in rehabilitation can benefit from this capability. The focus of the investigation was concerned with the application of biomechanical models, comprising of a kinematic chain and surface envelopes, and state-space filters, to the computation, in real time and with high accuracy, of the angular data and derivatives. By minimising the distances, measured with TV cameras, between the 2D marker projections and the corresponding back-projected markers located on the mannequin, the configuration of the biomechanical model was automatically updated. The use of state-space estimation allowed the computation of smooth derivatives of the orientation data. Owing to the non-linearity of the functions involved, the derivatives of the observation model were obtained through a multidimensional extension of Stirling's interpolation formula. Proper algorithms were developed to cope with the model calibration, initialisation and data labelling. Extensive experiments on real and simulated motions proved the reliability (maximum angular error less than 1 degree, maximum point reconstruction less than 1 mm) of the developed system, which is robust to false matching caused by marker occlusions. Moreover, orientation artifacts due to skin motion can be reduced by a factor of 50%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.